

Strain-Induced Second Harmonic Generation Enhancement in Monolayer MoS₂ Flakes Edge

Man-Hong Lai¹, Wei-Liang Chen¹, Chao-Yuan Lo¹, Jia-Ru Yu², Po-Wen Tang², Chi Chen², and Yu-Ming Chang¹

¹Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan ²Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan

Motivation

Second harmonic generation (SHG) intensity mapping using laser scanning confocal microscope (LSCM)

Sample: Monolayer MoS₂ grown on silicon substrate using CVD method

Abstract

- This edge enhanced SHG may be attributed to the intrinsic strain effect induced during the CVD growth condition, which modulates the nonlinear susceptibility.
- Micro-Raman spectroscopy analysis shows a blue shift in A_{1g} phonon mode at the flake edge, implies that the flake edge has a compressed and stiffened structure in an out-of-plane direction.
- The AFM analysis of the MoS₂ flake edge with enhanced SHG, indeed, detected a topographic height change as compared to the center region.

SHG Intensity Mapping

(a) MoS₂@SiO₂: Monolayer MoS₂ grown on a silicon substrate.
(b) MoS₂@Al₂O₃: Monolayer MoS₂ grown on a sapphire substrate.

Selected SHG intensity images of (c) $MoS_2@SiO_2$ and (d) $MoS_2@Al_2O_3$ acquired using LSCM and 1064 nm femtosecond laser excitation.

 MoS₂ @SiO₂ shows an enhanced SHG intensity near the flake edges. However, similar SHG edge enhancement is absent in MoS₂ @Al₂O₃.

Power Dependence

The power dependence of SHG intensity of $MoS_2@SiO_2$ center region, $MoS_2@SiO_2$ edge, and $MoS_2@Al_2O_3$. The inset figure shows the power dependence in low-intensity range and linear scale.

- The SHG contrast between the edge and the center became significant while increasing the laser intensity.
- A change in the gradient of the power dependence trend line can be observed as the laser intensity increases beyond 100 mW/μm². This may due to the laser-induced thermal strain on every regions of the sample.

Strain-Dependent SHG Intensity

• The strain dependent SHG intensity at the polarization direction ϕ is $I_{\Box}^{(2)}(2\omega) \propto (A\cos(3\varphi - 3\delta) + B\cos(2\theta + \varphi - 3\delta))^2$

with $A = (1 - v)(p_1 + p_2)(\varepsilon_{xx} + \varepsilon_{yy}) + 2\chi_0^{(2)}$ $B = (1 + v)(p_1 - p_2)(\varepsilon_{xx} - \varepsilon_{yy})$ v, Poisson's ratio $\varepsilon_{xx} \& \varepsilon_{yy}, \text{ principal stresses}$ $p_1 \& p_2, \text{ free parameters in photoelastic tensor}$ $\chi_0^{(2)}, \text{ nonlinear susceptibility}$

- The SHG variation with strain is related to the sum and difference of the photoelastic tensor elements p₁ and p₂.
- If the flake edge region is strained anisotropically, the asymmetry in principal strains will result in a nonzero term B, which further increases the SHG intensity.

Micro-Raman Mapping

SHG intensity mapping of (a) $MoS_2@SiO_2$ and (b) $MoS_2@Al_2O_3$. The yellow arrows show the scanning direction of the line scan Raman spectra.

(c) The contour plot of the line scan Raman spectra in $MoS_2@SiO_2$. The scan position is following to the scanning direction in (a). (d) The contour plot of the line scans Raman spectra in $MoS_2@Al_2O_3$. The scan position is following to the scanning direction in (b).

(e) The Raman spectra at the edge regions [red box in (c)] of $MoS_2@SiO_2$. (f) The Raman spectra at the edge regions [red box in (d)] of $MoS_2@Al_2O_3$.

 $MoS_2@SiO_2$ edge: Blue shift in out-of-plane A_{1g} phonon mode, from 404.9 to 407.7 cm⁻¹ while the in plane E^{1}_{2g} phonon mode remains unchanged at 388 cm⁻¹.

- The A_{1g} phonon mode at the flake center shows that it is in unstrained condition, indicates that the structure is compressed and stiffened in the out-ofplane direction at the flake edge.
- The SHG enhancement at the flake edge is related to this compressive strain. There is no SHG enhancement observed in sample MoS₂@Al₂O₃ because the strain is rather uniform throughout the sample.

 $MoS_2@Al_2O_3$ edge: No shifting in both $A_{1g} \& E_{2g}^1$ phonon mode.

Opt. Express 21, 4908-4916 (2013)

AFM Mapping

The AFM image of the $MoS_2@SiO_2$. The inset diagram shows the SHG image and the area of interest used in AFM analysis. The width of the white band top is ~0.34 μ m.

The topography profile of the flake edge (yellow line). The flake edge has a thickness of \sim 1.25 nm larger than that in flake center region.

 The flake edge is probably a highly strained monolayer as compared to the flake center region.

Conclusion

- The AFM and Raman spectroscopy results show that the thickness and the phonon modes in the out-of-plane direction at the flake edge in those monolayer MoS₂ flakes are different from the flake center region.
- The intrinsic strain induced during the growth process could be the reason of the edge-enhanced SHG observed in MoS₂@SiO₂. The laser-induced thermal effect could further alter the power dependence behavior of the SHG signal from every sample.
- These results bring out the awareness of the residual strain effect on 2D TMD device performance and the adequate characterization of the strained structure by SHG intensity mapping.

Ref.: AIP Advances 12, 105009 (2022) https://doi.org/10.1063/5.0104281

Thank you