Optical Characterization of Hybrid Organic-Inorganic 2D Perovskites

<u>Wei-Liang Chen¹</u>, Tzu-Pei Chen², Depei Zhang³, Tianran Chen³, Chinnambedu Murugesan Raghavan², Chao-Yuan Lo¹, Chun-Wei Chen², Seung-Hun Lee³, and Yu-Ming Chang¹

¹Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan

²Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan

³Department of Physics, University of Virginia, Charlottesville, USA

E-mail: wechen@ntu.edu.tw

Introduction

Solar cells made with 3D hybrid organic-inorganic perovskites (HOIPs) have reached efficiencies above 20% in just a few years but they show low device stability. Replacing the 3D HOIPs with its two dimensional counterpart results in a more stable perovskite based solar cell, though with a lower efficiency. Previously, we found that the organic cations play an important role in 3D perovkskite MAPbI₃ in extending its charge recombination lifetime and thus improving its solar cell performance. To investigate if similar effect occurs in 2D perovskite structures, we performed temperature dependent PL, TRPL, and Raman measurements for the 2D HOIP structure series (BA)₂(MA)_{n-1}Pb_nI_{3n+1} (n=1,

Temperature Dependent Raman Spectroscopy

2; BA = $C_4H_9NH_3$,; MA = CH_3NH_3). We used PL and Raman spectra to identify the phase transition temperatures of the 2D perovskite. The observed large PL lifetime change at the phase transition supports a similar screening role played by the organic cations in 2D perovskite in extending its PL lifetime.

Temperature Dependent Photoluminescence

Fig. 4 (A) Temperature dependent Raman spectra for the 1-layer 2D perovskite $(BA)_2PbI_4$. Also shown are the calculations of phonon density of states for two low T phase temperatures 13K, 200K and one high T phase temperature 350K. Phonons are calculated using VASP package and Phonopy software. (B) Vibrational energy distribution of the phonon modes for the low and high temperature case. The colors refers to different atoms as shown on the right. The distribution show that of the vibration modes above ~16 meV are associated with the organic molecule BA⁺.

1- and 2-layer Raman Spectrum Comparison

Fig. 2 (*A*) shows normalized temperature dependent PL spectra for the n=1,2,3 sample (*B*) shows the position of the PL peak as a function of temperature. The vertical dotted lines in (*B*) and the red and blue arrows in (*A*) mark the phase transition temperatures T_1 and T_2 .

Fig. 5 Temperature dependent Raman spectra for (A) 1-layer $(BA)_2PbI_4$ and (B) 2-layer $(BA)_2MAPbI_7$ normalized to peak feature within the spectral range shown. One layer structure $(BA)_2PbI_4$ shows clear qualitative change at ~270K (red arrows), similar to T_1 of PL measurement, corresponding to the phase transition between the low T and high T phase. For 2-layer $(BA)_2MAPbI_7$, there is an additional transition between 180K and 200K (blue arrows) that can be associated with the orthorhombic to tetragonal transition of 3D perovskite MAPbI₃.

Fig. 3 (A) Normalized time-resolved photoluminescence (TRPL) histogram of the three samples for selected temperatures near their phase transition temperatures (B) Fitted lifetime for the TRPL at various temperature and phases. For n=2 and 3 we observed a lifetime jump similar to previously observed orthorhombic – tetragonal transition at 170K for MAPbI₃. The vertical dotted lines in (B) mark the phase transition temperatures shown by the photoluminescence.

Conclusion

- Temperature dependent PL and Raman measurements show phase transition temperatures for the three 2D perovskite samples.
- 2- and 3-layer sample containing MA⁺ have a transition at ~165K-185K similar to 3D perovskite MAPbI₃ and show similar lifetime increase to the orthorhombic-tetragonal transition of MAPbI₃.
- This lifetime increase suggests the screening of charge carriers by rotation of organic cations is important in 2D perovskite as in 3D perovskite.

Acknowledgement

The work at National Taiwan University is supported by Ministry of Science and Technology of Taiwan (MOST 105-2119-M-002-046-MY3).