Field emission scanning electron microscopy |
|||||
|
|
|
|||
|
Gun type : cold cathode
|
||||
|
Resolution : 1.0 nm (15kV), 2.2 nm (1kV) |
||||
|
Accelerating Voltage : 0.5 – 30kV |
||||
|
Magnification : 25 – 650,000 |
||||
|
|
||||
|
backscattering electron microscopy:Yg detector
|
||||
|
|
||||
|
Range : B(5) – U(92)
|
||||
|
Resolution : 133 eV (Mn)
|
||||
|
|
||||
|
Scanning range : 160 ~ 1200 nm |
||||
|
Spectral resolution : 0.1 nm |
||||
|
Temperature : 4.2 K – 300 K
|
||||
|
|||||
|
Top view FESEM images of carbon nanotubes grown for only 40 s on Fe-coated si substrate with a Fe-layer thickness of 7 nm taken in a) secondary electron imaging (SEI) mode b) backscatter electron imaging (BEI) mode. |
||||
|
|||||
|
Corss-sectional FESEM images of CNT samples indicate the identical pairs of points of the sample in the SEI and BEI modes. |
||||
L. C. Chen, C. Y. Wen, C. H. Liang, W. K. Hong, K. J. Chen, H. C. Cheng, C. S. Shen, C. T. Wu and K. H. Chen, Advanced Functional Materials 12, 687 (2002). |
|||||
|
|||||
|
|||||
The EDS mapping |
|||||
|
|||||
Hexagonal-to-cubic phase transformation in GaN nanowires by Ga+ implantation |
|||||
|
|||||
SE and CL (excited at 3.3 eV) images at 4 K showing large of the nanowires are in cubic phase. |
|||||
|
|||||
|
|||||
Temperature dependent CL spectra for the postannealed nanowires irradiated with an optimum fluence of 5 × 10-2 cm-2 showing the presence of cubic GaN. Inset shows the temperature dependence of the band-to-band transition peak energies. |
|||||
S. Dhara, A. Datta, C. T. Wu, Z. H. Lan, K. H. Chen, and Y. L. Wang, C. W. Hsu, C. H. Shen, and L. C. Chen, and C. C. Chen, Appl. Phys. Lett. 84, 5473 (2004). |
|||||
|
|||||
|
|||||
The CL spectra of temperature dependence, sample : ZnO Single nanorod with 100 nm diameter |
|||||
|
|||||
|
|||||
CL spectra of single GaN nanorod indicate a slight blue shift with the diameter of nanorod increasing. |
|||||
|
|||||
Acceleration voltage resolved CL spectra of InGaN film |
|||||
|
|
||||
The 3, 5, 8, and 15 kV electron voltages roughly correspond to the penetration depths of 88, 210, 450, and 1300 nm. |
|||||
|
|||||
S. W. Feng, T. Y. Tang, Y. C. Lu, S. J. Liu, E. C. Lin, C. C. Yang, K. J. Ma, C. H. Shen, L. C. Chen, K. H. Kim, J. Y. Lin, H. X. Jiang, J. Appl. Phys. 95, 5388 (2004). |
|||||
|