iVac Spectrometer

R.A. Lee, Yu-Yang P.I. Chang, Yu-Ming Date: 2013 May 6

Specification

Basic Components of iVac Spectrometer

- Andor iVac
- Newport plane Holographic reflection grating.*1
- PAT-001 rotational stepper motor. *2

Specification of Andor iVac

Key Specifications

Model Number	iVac
Sensor option	CCD - 2198
Active pixels	1650x200 pixels
Pixel Size	16 um x 16 um
Image area	26.6x3.2 mm
Minimum Readout Speed	35kHz
Dark current (@ 25°C ambient)	0.1 @ -50°C 0.02 @ -60°C (e⁻/pixel/sec)
Read Noise	5 e ⁻ @ 35 kHz

Quantum Efficiency Curves of Andor iVac

Newport Plane Holographic Reflection Grating

Catalog No.	20HR1200- 800-1
Groove Frequency	1200 per mm
Dimensions	50x50x6mm
Blazed or Modulation	High modulation
Nominal Blazed Wavelength Tolarance	±25 μm
Coating	Aluminum
Spectral Region	500-1200 nm
Max efficency	@ 800nm

Calibration Protocal

**現用以前的Data做Center Wavelength校正

Basic Grating Equations – for Center Wavelength

 $Gm\lambda = \sin \alpha + \sin \beta$

G: Groove Density (Groove/nm) (eq.1) m: Diffraction Order

$$\lambda = \frac{2}{G} \cos \theta_0 \sin \theta$$
(eq.2)

 θ = angle rotated from $\alpha = \beta = \theta_0$ θ_0 = (Deviation Angle)入射光與出射光夾角的一半 = 同時也是Zero Order之角度

Pulses to central wavelength

Peak position (nm)	pulse number	Fitted Difference (nm)
404.66	24371	-0.04518
407.78	24416	-0.03493
435.83	24821	0.01517
546.08	26431	0.04036
576.96	26889	0.06177
579.07	26919	-0.03202
696.54	28694	-0.09431
706.72	28855	0.17889
727.29	29171	0.02383
738.4	29345	0.09619
750.39	29531	0.01265
751.46	29547	-0.03543
763.51	29735	-0.10551
772.42	29879	0.12591
794.82	30232	0.00531
800.62	30326	0.1065
801.48	30340	0.12425
809.32	30464	0.04551
810.37	30480	-0.00476
811.53	30499	0.02191
826.45	30737	-0.08102
840.82	30967	-0.21666
842.46	30993	-0.25286
852.14	31154	-0.02584
866.79	31394	0.01417
871.66	31474	0.0198
912.3	32146	-0.09001
922.45	32319	0.06856
965.78	33053	-0.11618
978.45	33274	0.01242
1013.97	33896	0.02162
1047	34487	0.05853
1092.16	35316	0.10358
1153.92	36492	0.00528
1158.14	36574	-0.02664
Standard Deviation	on of Fitting Errors	0.090583

Fitting Process

•透過原先的Fitting將較弱的Peak位置補齊,同時確認並建立CAL-2000的Data Base

$$\lambda = A \sin(\frac{P - P_0}{72000} \times \pi)_{(eq.3)}$$

•We got – A = 1645.15546 (nm) $P_0 = 18675.96737$ (pulse)

*尚未確認Zero Order的位置

Equation for Fitting to Deviation Angle

•從eq.3我們利用Fitting得出

A = 1645.15546 (nm) P₀ = 18675.96737 (pulse)

•由上我們得知,因此可以算出Deviation Angle θ_0 。(即JY所述之Ebert Angle)

Front Panel of The Examine Program

🔛 pulse	e numbers	to focal leng	th.vi Front I	Panel											_ 🗆 🗙
<u>File</u>	dit <u>V</u> iew	<u>P</u> roject <u>O</u> pe	rate <u>T</u> ools	<u>W</u> indow	<u>H</u> elp										
[수 🕹 🔍	II 15pt Applie	cation Font			r									2 -1
Groc	ove Density	/ G/nm		Zeroth O	rder Positio	n									
1200)	0.0012		18676						stop					
Ebei	rt Angle	Focal Plar	ne Anale	Pulse to	half turn					STOP					
	5	x T) 0		72000											
		um per pix	el	CCDPixe	:I			A	Distance	from Center				_	
Nega	ative Order	7 16		1650				T U	-11.2	-6.4 -1	1.6 3.2	2 8	12.8		
								J 0	-11.2	-6.4 -1	1.6 3.2	2 8	12.8		
	Pulse								Focal Len	ath					
$-\frac{\lambda}{\tau}$ 0	24571	24678	4 247	86	24893	24998	25106	e (†)	489.71	489.764	501.546	486.279	495.176	492.431	
- (÷) o	33669	33766	4 338	64	33961	34058	34158	$\left(\frac{\lambda}{\tau}\right)$	491.485	492.134	504.777	490.901	494.936	491.088	
- AY	Target Po	sition		-		<i>(</i>).		. A.	Dispersio	n					
- J.U	1525	1225	÷) 925	J	625	325	3 25	€ O	-1.31017	-0.748671	-0.182781	0.377034	0.925583	1.48898	
								ÐO	-1.30543	-0.745066	-0.181611	0.373485	0.926032	1.49305	
	Target wa	velength							0	0	0	0	0	0	
- () o	435.84														
	1013.975	5							SinAlpha						
								÷) o	0.0962381	0.100884	0.105571	0.110213	0.114765		
	Calculater	d Center Way	zelenath					(†) O	0.47359	0.477313	0.481067	0.484773	0.48847		
<u>(</u>	418.515	425.939	433,422	440.827	448.084	455.539	-		Alpha		т	heta			
÷) o	1001.11	1006.63	1012.18	1017.66	1023.12	1028.74	-	() (5.52258	5.79008	- ÷) o - r	14.7376 15	.0051		
37				,					28.2676	28.5101	÷) o 👘	37.4826 37	.7251		
- A3-	Verified C	enter Wavele	ength					¥″	Bota		B	ota 2			
- () O	418.515	425.939	433.422	440.827	448.084	455.539			23.9526	24 2201		25 2627 24	9688		
e ()	1001.11	1006.63	1012.18	1017.66	1023.12	1028.74		4 n	46 6976	46.9401	- Andrewski (* 1997)	48.003 47	6851		
									10.0310	13.5101	- 9	10.000			_
•															

C:\Program Files\ULSLab Programss\General Lib for LabVIEW 8.6\ULSLab SubVIs (86)\ Spectral Dispersion Calculation.IIb\pulse numbers to focal length.vi

How to Use – Part I

- Type in "Groove Density", "Ebert Angle"(θ_0), "um per pixel", "Zeroth Order Position", "CCDPixel"
- "Pulse to half turn" would change while the rotational stage is different
- Focal Plane Angle should better be "0"
- In current setting, "Negative order" can be decided by following method.

-- If the pulse number goes up while the wavelength of center pixel goes down, than we're looking at the "Negative order" of this grating, and vise versa.

How to Use – Part II

- Fill up "Pulse" array, each element should be decided in respect to element of "Target position".
- Fill up the "Target Wavelength"

Dispersion Angle – I

•透過改變Center Wavelength,用以將435.84以及1013.98這兩個Peak分別定於 CCD上25、325、625、925、1225以及1525 pixel的位置(iVac CCD為1650 Pixels), 並記錄每個位置對應到的Grating轉動的Pulse Number。

•在計算Dispersion以及Focal Length時之中心波長是由真實的Grating pulse position經由eq.2 or eq.3計算出來的結果。同時再以計算出之 α 、 β 值驗算中心波長的值、確保 α 、 β 以及程式正確。

0	Pulse					
÷) o	24571	24678	24786	24893	24998	25106
÷) o	33669	33766	33864	33961	34058	34158

Calcu	lated	Center Wa	velength			
J 418.5	15	425.939	433.422	440.827	448.084	455.539
) 1001	11	1006.63	1012.18	1017.66	1023.12	1028 74
		,				
Verifi	ed Ce	nter Wavel	length	,		,
Verifi 418.5	ed Ce	nter Wavel 425.939	length 433.422	440.827	448.084	455.539

Dispersion Angle – II

•iVac每個Pixel之大小為16µm,故可計算Distance from Center Pixel •透過eq.1,我們可以回推估該pixel位置所對應之 α 、 β 值,而Dispersion Angle(ϕ_p) 實為eq.5,其中 β_c 為中心波長對應的 β 值, β_p 為某一pixel對應的 β 值

•程式也會透過下頁的公式去計算Focal Length的長度,其計算值不可波動太大,否則須檢查算式

Focus Length and Focal Plane Angle – Derived from Jobin Yvon Tutorial

•從左圖我們可以得到eq.6之關係 $\tan(\emptyset + \delta) = \frac{d + f \sin \delta}{f \cos \delta} \text{ (eq.6)}$

•因此,我們得到 ϕ 對f以及 δ 之關係, 如eq.7,可做為後續fitting之用

$$\emptyset = \tan^{-1} \left(\frac{d + f \sin \delta}{f \cos \delta} \right) - \delta$$

(eq.7)

- δ = focal plane Angle
- ϕ = Dispersion Angle
- f = Focus Length
- *d* = Displace from Center Pixel

Focus Length and Focal Plane Angle – Our Lab

$$\tan \phi = \frac{1}{f + d \sin \delta} \quad (eq.8)$$

•由此可計算Focus Length
$$f = rac{d\cos\delta}{ an artheta} - d\sin\delta$$
(eq.9)

**相較之下,此看法得出之eq.8以 及eq.9的形式較為簡單,方便用於 直接計算focus length的值,若誤 差很小時,則不需要fitting輔助。

Dispersion Angle to Focal Length

•上述二者所提出之方程式,為等價之方程式,因此用二者其中一項均可採用。先前不經徹底思考,因故採用eq.7。但後來覺得eq.8、eq.9的形式較簡單。

•透過程式搭配eq.1、eq.2得到的Dispersion Angle,加上離中心Pixel的距離,以 eq.7做為fitting公式,我們得到:

491.65

•透過下述Examine Program測試,491.65的誤差較小。

Examine the Fitting

Displacement to Wavelength.vi Front Panel				
<u>E</u> ile <u>E</u> dit <u>V</u> iew <u>P</u> roject <u>O</u> perate <u>T</u> ools <u>W</u> indow <u>H</u> elp	Wave- length			
🕹 🐼 🖲 💵 15pt Application Font 💌 🏣 🕯 🏧 🕮 🕬	8 Calc.			
Distance to Center Groove Density wavelength	_			
J 11.2 J 1200 1013.97				
Focal Length				
J 431.05				
o Constant Plane Angle				
1001.11				
sinAlpha				
0.47359				

C:\Program Files\ULSLab Programss\General Lib for LabVIEW 8.6\ULSLab SubVIs (86)\ Spectral Dispersion Calculation.IIb\Displacement to Wavelength.vi

How to Use

 將所有必要的參數輸入,其中sinAlpha 請使 用pulse numbers to focal length.vi,給出來之 參數。

Test Report

Sample

- CAL-2000 Calibration Light Source.
- Exposure : 10ms
- Average : 1 times
- Optical Fiber : 100 μ m

Peak Intensity Variance

Sample

- CAL-2000 Calibration Light Source with 8um fiber.
- Exposure : 100ms
- Average : 1 times
- Optical Fiber : 50 μm

Repeatability

0 -> 577 -> 1092 -> 1200 -> 1092 -> 577 -> 0 ->… 一直重複做出5組Data

	Reading	Theory	Difference
L	404.611	404.656	0.045
Μ	404.546	404.656	0.110
R	404.636	404.656	0.020
	Root Mean	Square Error	0.070
	In Wave	number	4.249

	Reading	Theory	Difference
L	696.564	696.543	-0.021
Μ	696.507	696.543	0.036
R	696.494	696.543	0.049
	Root Mean	0.037	
	In Wave	number	0.765

	Reading	Theory	Difference
L	842.39	842.465	0.075
Μ	842.272	842.465	0.193
R	842.363	842.465	0.102
	Root Mean S	0.133	
	In Wave	number	1.877

	Reading	Theory	Difference
L	1046.879	1047	0.121
Μ	1046.883	1047	0.117
R	1046.961	1047	0.039
	Root Mean	0.100	
	In Wave	0.910	

	Reading	Theory	Difference
L	1158.052	1158.13	0.078
М	1157.965	1158.13	0.165
R	1158.084	1158.13	0.046
	Root Mean	0.109	
	In Wave	0.810	

Calibration Error v.s. Wavelength

Band Pass (FWHM of line spectrum) – From Jobin-Yvon Tutorial

• 假設入射光源為真實的單色光,而在CCD端的line peak半高寬則視為,"狹縫的成像(Slit Width x Magnification)" x"單位距離的波長變化(Dispersion)"。 Dispersion (nm/mm) = $\frac{d\lambda}{dx} = \frac{10^6 \cos \beta}{GmL_B} = 1.67 \cos \beta$ Eq.10

Slit Width × Magnification =
$$w \times \left(\frac{\cos \alpha}{\cos \beta} \times \frac{L_B}{L_A}\right)$$
 Eq.11

•JY 定義量到的光譜半高寬為" Band Pass"

Band Pass(FWHM) = w × $\frac{10^6 \cos \alpha}{\text{GmL}_A}$ = 100 × 10⁻³ × $\frac{10^6 × \cos \alpha}{1200 × 500}$ = 0.167 cos α Eq.12

w = enterance slit

 $\alpha = input angle$

G = groove density

m = diffraction order

 $L_A =$ focal length of entrance mirror

Resolution – Spectra FWHM

Peak Position (nm)	FWHM (nm)	Alpha (degree)	Theoretical FWHM (nm)
404.656	0.261	23.45	0.153
696.543	0.135	34.26	0.138
842.465	0.131	40.02	0.128
1047	0.201	48.74	0.132
1158.13	0.284**	53.96	0.196**

** 1158.13 is second order peak of Hg line 579.066

G = 1200 groove/mm m = 1 (first order) L = 500 mm w = 100 x 10⁻³ mm

• Use eq.12 to get "Theoretical FWHM"

Band Pass = $0.167 \cos \alpha$