# 拉曼光譜顯微鏡的原理簡介

112年AI-MAT暑期實習課程

Prepared by:黎文鴻博士

### C. V. Raman

- Named after Indian scientist C. V. Raman.
- Observed the Raman effect in organic liquids in 1928 together with K.S. Krishnan, and independently by Grigory Landsberg and Leonid Mandelstam in inorganic crystals.



### **Raman Scattering**

- Inelastic photon-phonon interactions in the sample
- formation of a very short-lived complex between the photon and molecule, commonly called the **virtual state** of the molecule.
- The oscillating electromagnetic field of a photon induces a polarization of the molecular electron cloud which changes the energy state of the molecule.



### What is Raman Spectroscopy?

- An analytical technique where scattered light is used to measure vibrational energy modes of molecules.
- Only detects vibrations where the polarizability changes during the movement (Raman-active)
- Complementary with fourier-transform infrared spectroscopy (FTIR)



Figure 7: The symmetric stretching vibration of carbon dioxide (CO2) increases the size of the electron cloud. It is therefore Raman-active.

### Raman Spectrum

- Provide both chemical and structural information, as well as the identification of substances through their characteristic Raman 'fingerprint'.
- The vibrations of certain distinct subunits of a molecule, called its functional groups, will appear in a Raman spectrum at characteristic Raman shifts.



### Raman Shift

 Energy difference between the incident light and the scattered light, usually expressed in wavenumbers.

Raman shift 
$$(cm^{-1}) = \left(\frac{1}{\lambda_{laser}(nm)} - \frac{1}{\lambda_{Raman}(nm)}\right) \times 10^7$$

Stokes & Anti-Stokes



### **Components in Micro-Raman Spectroscopy**



### **Simple Raman Setup**



### Laser

#### Wavelength

- Excitation below bandgap can avoid photoluminescence
- $\succ$  Raman scattering efficiency is proportional to  $\lambda^{-4}$
- Resonance wavelength

#### Bandwidth

- Affects spectral resolution
- Crucial for low frequency Raman mode detection.

#### Power

Below damage threshold can avoid sample degradation

#### Raman spectrum of polystyrene



Raman spectrum of sulfur



Filter



Laser line filter

Reduces the laser bandwidth

#### Long-pass filter

Transmitting light above its cut-off wavelength

### **Dichroic mirror**

- Selectively reflect and transmit light depends on its wavelength range
- Eliminates the laser wavelength from the total signal ND filter
- Attenuates the laser intensity





Typical long-pass filter transmission



30 20

## **Objective lens**



- On sample laser intensity
- Spatial resolution (associate with laser wavelength)



## Spectrometer

### Slit width

➢Spectral resolution

### Grating

Spectral resolution, measurement wavenumber range

i**R**550

iHR 32

### CCD

Effective wavenumber range, spectral resolution



**Focal Length** 

Detecto

**Focusing mirror** 

## **Optical Fiber**



#### Fiber core size

- Signal intensity
- Spectral & spatial resolution





## Application

#### Chemistry

Identify molecules and study chemical bonding and intramolecular bonds

#### Solid-state physics

- Characterize materials
- Measure temperature
- > Indentify the crystallographic orientation

#### **Biology and medicine**

- > Identify active pharmaceutical ingredients
- Low-frequency phonons in proteins and DNA

# The End

Thank you