2024 光電聚落教育訓練課程

雷射掃描共軛焦 光譜顯微鏡原理介紹

成功大學 綜合大樓2樓48218室 2024/4/19 (星期五)

「雷射掃描共軛焦光譜顯微鏡」之原理介紹

講義內容:

- 1. What is a confocal microscope? How does it differ from a typical widefield optical microscope?
- 2. What are the main components of a typical laser scanning confocal spectromicroscope (LSCSM)?
- 3. How are images acquired by LSCM?
- 4. What are the key performance specifications of a LSCM?
- 5. What components determine the resolution of a LSCM?
- 6. How is the optimal pinhole size determined?
- 7. How can we measure the resolution of a LSCM?
- 8. Other factor affecting the performance of LSCM

WILD FIELD VS. CONFOCAL IMAGING

Widefield (left) vs Laser-scanning confocal (right)

3D Culture of mammary epithelial cells (乳腺上皮細胞) (35 – 50 µm thick) Reference: microscopysolutions.ca

CONFOCAL IMAGING AND 3D RECONSTRUCTION

Pollen grain imaging			
0.0 µm	1.8 µm	3.5 µm	5.3 µm
7.0 µm	8.8 µm	10.5 µm	12.3 µm
з ф т	÷.		
14.0 µm	15.8 μm	17.5 um	19.3 µm
	Ç,		
21.0 µm	22.8 µm	24.5 μm	26.3 µm
		- M	*

3D reconstruction from 116 images

FROM WIDEFIELD TO CONFOCAL MICROSCOPE

- A cell (say), in a thick sample, is imaged by
 - a lens.

In focus

Out of focus

FROM WIDEFIELD TO CONFOCAL MICROSCOPE

A pinhole in image space passes all the light from cell 1.

In focus Signal passes pinhole

Out of focus Blacked by pinhole

FROM WIDEFIELD TO CONFOCAL MICROSCOPE

(3)

FROM WIDEFIELD TO CONFOCAL MICROSCOPE

A point source of light, CONFOCAL with cell 1 and the pinhole, selectively illuminates cell 1.

A beam splitter allows the confocal microscope to be epitaxial.

CONFOCAL ILLUMINATION AND DETECTION

Single point confocal detection

- Same objective used for focusing excitation and collecting emission
- Optical fiber diameter determines the pinhole size
- Image can be formed by moving the sample stage scanning the laser excitation
- How do we scan the laser beam instead?

 Acquired PMT or spectrum signal is correlated with mirror position to form image

HOW ARE IMAGES ACQUIRED BY LSCM?

- 1. Computer send signal to position scanning mirror
- 2. Signal read in from PMT or spectrometer point by point

LSCM SYSTEM

KEY PERFORMANCE SPECIFICATIONS OF A LSCM?

- Resolution
 - Lateral and axial
- Scanning speed and precision
 - Galvo speed and precision
- Scanning field size
 - Scanning lens size
- Detection sensitivity and spectral range
- Available light source / filters

RESOLUTION OF A LSCM

- Resolution determined mainly by the point spread function
- Even for perfect optics, the psf is limited by diffraction

http://zeiss-campus.magnet.fsu.edu/referencelibrary/laserconfocal.html

RESOLUTION BY RAYLEIGH CRITERION

Rayleigh criterion: minimal of one peak coincide with maxima of the other peak

http://www.kshitij-iitjee.com/resolution-of-single-slit-and-circular-apertures

GEOMETRIC VS WAVE OPTICS

Geometric optics: infinitely small focus

Wave optics: focal point has finite size

The smaller the focal point, the better the resolution

Reference:

https://www.tf.uni-kiel.de/matwis/amat/admat_en/kap_5/backbone/r5_1_2.html https://www.sparknotes.com/physics/optics/geom/section3/

DIFFRACTION (繞射)

How does the minimum position change with the opening size?

Reference: http://electron6.phys.utk.edu/light/1/Diffraction.htm

FACTORS THAT DETERMINES THE RESOLUTION OF A LSCM

- Objective numerical aperture (NA)
- Excitation and detection wavelength
- ► Pinhole size

$$r_{resel} = 0.61\lambda/NA$$

NA = $n \sin\theta$

Rayleigh criterion for resolution: minimal distance resolvable between two points is r_{resel} , corresponds to a 26% dip

resel=resolution element FWHM = 0.84 * resel

For 50x NA=0.8 objective with λ =405nm, Resel = (0.61)(405nm)/0.8 = 300 nm

FILLING THE OBJECTIVE PUPIL

- Under-filling of pupil can lead to lost of resolution (effectively low NA)
- Over-filling of pupil loses laser power

FILLING THE OBJECTIVE PUPIL

- ω = radius of Gaussian laser beam containing 86% of light
- Plot of psf for 4 pupil size compare to laser beam waist ω
- Too much under-filling of pupil can lead to lost of resolution

CONFOCAL RESOLUTION

- Point excitation + point detection leads to better resolution
- Point spread function (psf) at the focal plane and planes parallel to it for (a) wide field (b) confocal
- Ideal confocal resolution based on Rayleigh criterion (26% dip):

 $\Delta r_{conf} = 0.44\lambda/NA$ (lateral resolution) $\Delta Z_{axresel} = 1.5n\lambda/NA^2$ (axial resolution)

Actual resolution depends on pinhole size

MAGNIFICATION FOR INFINITY OPTICS

Tube lens focal length differs for different manufacturer

HOW BIG SHOULD THE PINHOLE BE?

Determine how 1 resolution element gets Mangnified at the pinhole position: resel at pinhole = (3)(42) (resel at sample)

For 50x NA=0.8 objective with λ =405nm, Resel at pinhole = 126*0.3 µm ~ 40 µm

 A pinhole smaller than one resel does not improve resolution, it just loses light

HOW AXIAL RESOLUTION CHANGES WITH THE PINHOLE SIZE?

Reference: Zeiss Confocal Principles

- Red curve shows how axial resolution changes with pinhole size
- ► NA = 0.6
- ▶ n=1
- ▶ λ=520 nm

 $1AU = 1.22\lambda/NA$ 1 RU = $n\lambda/NA^2$

HOW CAN WE MEASURE THE RESOLUTION OF A LSCM?

- Lateral resolution:
 - Scan image of an object (fluorosphere) with size below optical resolution
- Axial resolution:
 - Axial scan of a small fluorescent object
 - Axial scan of a mirror (detect reflection)
 - Axial scan of a fluorescent thin plane
- Often easier to measure FWHM = 0.84*resel

SAMPLE AFFECTING RESOLUTION

From Zeiss Confocal Principles

LSCM APPLICATION: SPECTRAL MAPPING

 PL spectral mapping of WSe₂ flake show position dependence in PL spectra

LSCM APPLICATION: DEPTH RESOLVED RAMAN MAPPING

Depth Resolved Raman Mapping of LED

E2(high) intensity mapping The Raman at different position

E₂(high) peak position mapping

Raman frequencies along red lines

LSCM APPLICATION: TRPL OF NANO STRUCTURE

Rod on Ag

Lifetime measurement of single rod

Rod on ITO

-60

-40

-20

WHAT I HOPE YOU LEARNED:

- How confocal microscope obtain optical sectioning
- The main components of a LSCM and how they affect the performance of LSCM
- ► How to better integrate LSCM into your research