|
||||||||
|
||||||||
|
||||||||
|
|
|||||||
|
||||||||
|
||||||||
|
||||||||
Different structure of silicon carbon nitride : (a) single crystal, (b) polycrystalline film, (c) oriented film and (d) nanorods. |
||||||||
|
||||||||
Crystalline silicon carbon nitride : A wide band gap (3.8-4.7eV) semiconductor. |
||||||||
|
||||||||
The experimental piezoreflectance (PzR) spectra (dotted curves) of SiCN at 20, 150, 300, 400, and 500 K, respectively. The solid curves are least-squares fits to the first derivative of a Lorentzian profile, which yields the direct band-to-band transition energy indicated by the arrow. |
||||||||
L. C. Chen, C. K. Chen, S. L. Wei, D. M. Bhusari, K. H. Chen, Y. F. Chen, Y. C. Jong, Y. S. Huang, Appl. Phys. Lett., Vol. 72, No. 19 (1998). |
||||||||
|
||||||||
Crystalline SiCN : a hard material (30 GPa) rivals to cubic BN. |
||||||||
|
||||||||
A typical indentation response of SiCN crystal deposited by microwave CVD at 1000oC. |
||||||||
L.C. Chen, a, K.H. Chen, S.L. Wei, P.D. Kichambare, J.J. Wu, T.R. Lu, C.T. Kuo, Thin Solid Films 355-356, 112 (1999). |
||||||||
|
||||||||
Excellent field emission property of quasi-aligned SiCN nanorods |
||||||||
|
||||||||
Field emission J –E curve and the corresponding F–N plot of the SiCN nanorods. |
||||||||
F. G. Tarntair, C. Y. Wen, L. C. Chen, J. J. Wu, K. H. Chen, P. F. Kuo, S. W. Chang, Y. F. Chen, W. K. Hong, H. C. Cheng, Appl. Phys. Lett. 76, 2630 (2000). |
||||||||
|
||||||||
|
||||||||
|
||||||||
Application of nanocrystalline diamond (NCD) : surface acoustic wave (SAW) device |
||||||||
|
|
|
||||||
|
||||||||
|
||||||||
|
||||||||
Characteristics of 0th SAW (surface acoustic wave) spectra |
||||||||
|
||||||||
|
||||||||
Characteristics of 1st SAW (surface acoustic wave) spectra |
||||||||
|
||||||||
|
||||||||
Gated CNT-FED with controllable parameters |
||||||||
|
||||||||
|
||||||||
Gated CNT-FED, anode I-gate V characteristics |
||||||||
|
||||||||
Gated CNT-FED with slightly over-gate exhibits optimized FE performance. |
||||||||
|
||||||||
Discharging capacity behavior of CNTs grown under different microwave power |
||||||||
|
||||||||
|
||||||||
Charging capacity behavior of CNTs grown under different microwave power |
||||||||
|
||||||||
|
||||||||
Narrow size distribution of Pt nanoparticles on carbon nanotubes |
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
The tie-line between Si3N4 and C3N4 established in the samples produced by the ECRCVD |
||||||||
|
||||||||
‘Progress and Status of SiCN: a New Wide Band Gap Material’, L. C. Chen, K. H. Chen, J.-J. Wu, D. M. Bhusari and M. C. Lin, Chapter 2, pp. 73-125, in H. S. Nalwa, Ed., Si-Based Materials and Devices, Academic Press, 2001. |
||||||||
|
||||||||
Generally applicable self-masked dry etching technique for nanotip array fabrication |
||||||||
|
||||||||
Tilted top-view FESEM morphologies of the nanotip arrays fabricated by the self-masked process of various substrates: (A) single-crystal silicon (Si); (B) polycrystalline silicon (poly-Si); (C) epitaxial gallium nitride (GaN) film on sapphire; (D) single-crystal gallium phosphide (GaP); (E) sapphire; and (F) aluminum. The insets show their corresponding magnified images. |
||||||||
|
||||||||
|
HRTEM image of the Si nanotip revealing a SiC cap formed on top of the tip. Inset shows the magnified HRTEM image of the interface between Si and SiC cap on which the lattice mismatch of Si/SiC = 4:5 can be observed. |
|||||||
C. H. Hsu, H. C. Lo, C. F. Chen, C. T. Wu, J. S. Hwang, D. Das, Jeff Tsai, L. C. Chen, K. H. Chen, Nano Lett. 4, 471, 2004. |
||||||||
|
||||||||
Super hydrophilic to hydrophobic, sample : Si nanotips |
||||||||
|
||||||||
|
||||||||
|
||||||||
Excellent antireflection of GaAs nanotip arrays |
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
|
|
||||||
The infrared-photoluminescence (IR-PL) spectra of InN nanobelts. |
||||||||
|